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Problem 1

Let n be a positive integer. Assume that n numbers are to be chosen from the table

0 1 · · · n− 1
n n+ 1 · · · 2n− 1
...

...
. . .

...
(n− 1)n (n− 1)n+ 1 · · · n2 − 1

with no two of them from the same row or the same column. Find the maximal value of the product of these
n numbers.

Solution

The product is R(σ) =
∏n−1
i=0 (ni + σ(i)) , for some permutation σ : {0, 1, . . . , n− 1} → {0, 1, . . . , n − 1}. Let σ

be such that R(σ) is maximal. We may assume that all the multipliers ni+σ(i) are positive, because otherwise
the product is zero, that is the smallest possible.
Assume further that σ(a) > σ(b) for some a > b. Let a permutation τ be defined by

τ(i) =


σ(b), i = a;

σ(a), i = b;

σ(i), otherwise.

We have
R(τ)

R(σ)
=

(na+ τ(a))(nb+ τ(b))

(na+ σ(a))(nb+ σ(b))
=

(na+ σ(b))(nb+ σ(a))

(na+ σ(a))(nb+ σ(b))
> 1,

as

(na+σ(b))(nb+σ(a))− (na+σ(a))(nb+σ(b)) = n(aσ(a) + bσ(b)− aσ(b)− bσ(a)) = n(a− b)(σ(a)−σ(b)) > 0.

This is a contradiction with the maximality of R(σ), hence, σ has to satisfy σ(a) < σ(b) for all a > b. Thus,
σ(i) = n− 1− i for all i, and

R(σ) =

n−1∏
i=0

(ni+ n− 1− i) =

n−1∏
i=0

(i+ 1)(n− 1) = (n− 1)nn! .

Problem 2

Let k and n be positive integers and let x1, x2, . . . , xk, y1, y2, . . . , yn be distinct integers. A polynomial P
with integer coefficients satisfies

P (x1) = P (x2) = . . . = P (xk) = 54

and
P (y1) = P (y2) = . . . = P (yn) = 2013.

Determine the maximal value of kn.

Solution

Letting Q(x) = P (x)− 54, we see that Q has k zeroes at x1, . . . , xk, while Q(yi) = 1959 for i = 1, . . . , n. We
notice that 1959 = 3 · 653, and an easy check shows that 653 is a prime number. As

Q(x) =

k∏
j=1

(x− xj)S(x),
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and S(x) is a polynomial with integer coefficients, we have

Q(yi) =

k∏
j=1

(yi − xj)S(xj) = 1959.

Now all numbers ai = yi − x1 have to be in the set {±1, ±3, ±653, ±1959}. Clearly, n can be at most 4, and
if n = 4, then two of the ai’s are ±1, one has absolute value 3 and the fourth one has absolute value 653.
Assuming a1 = 1, a2 = −1, x1 has to be the average of y1 and y2. Let |y3 − x1| = 3. If k ≥ 2, then x2 6= x1,
and the set of numbers bi = yi − x2 has the same properties as the ai’s. Then x2 is the average of, say y2 and
y3 or y3 and y1. In either case |y4 − x2| 6= 653. So if k ≥ 2, then n ≤ 3. In a quite similar fashion one shows
that k ≥ 3 implies n ≤ 2.
The polynomial P (x) = 653x2(x2 − 4) + 2013 shows the nk = 6 indeed is possible.

Problem 3
Let R denote the set of real numbers. Find all functions f : R→ R such that

f(xf(y) + y) + f(−f(x)) = f(yf(x)− y) + y for all x, y ∈ R.

Solution

Let f(0) = c. We make the following substitutions in the initial equation:

1) x = 0, y = 0 =⇒ f(0) + f(−c) = f(0) =⇒ f(−c) = 0.

2) x = 0, y = −c =⇒ f(−c) + f(−c) = f(c− c2)− c =⇒ f(c− c2) = c.

3) x = −c, y = −c =⇒ f(−c) + f(0) = f(c)− c =⇒ f(c) = 2c.

4) x = 0, y = c =⇒ f(c) + f(−c) = f(c2 − c) + c =⇒ f(c2 − c) = c.

5) x = −c, y = c2 − c =⇒ f(−c) + f(0) = f(c− c2) + c2 − c =⇒ c = c2 =⇒ c = 0 or 1.

Suppose that c = 0. Let f(−1) = d+ 1. We make the following substitutions in the initial equation:

1) x = 0 =⇒ f(y) + f(0) = f(−y) + y =⇒ y − f(y) = −f(−y) for any y ∈ R.

2) y = 0 =⇒ f(0) + f(−f(x)) = f(0) =⇒ f(−f(x)) = 0 for any x ∈ R.

3) x = −1 =⇒ f(y − f(y)) + 0 = f(dy) + y =⇒ f(dy) = −y + f(−f(−y)) = −y for any y ∈ R.

Thus, for any x ∈ R we have f(x) = f(−f(dx)) = 0. However, this function does not satisfy the initial equation.
Suppose that c = 1. We take x = 0 in the initial equation:

f(y) + f(−c) = f(0) + y =⇒ f(y) = y + 1

for any y ∈ R. The function satisfies the initial equation.
Answer: f(x) ≡ x+ 1.

Problem 4
Prove that the following inequality holds for all positive real numbers x, y, z:

x3

y2 + z2
+

y3

z2 + x2
+

z3

x2 + y2
≥ x+ y + z

2
.

2
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Solution

The inequality is symmetric, so we may assume x ≤ y ≤ z. Then we have

x3 ≤ y3 ≤ z3 and
1

y2 + z2
≤ 1

x2 + z2
≤ 1

x2 + y2
.

Therefore, by the rearrangement inequality we have:

x3

y2 + z2
+

y3

x2 + z2
+

z3

x2 + y2
≥ y3

y2 + z2
+

z3

x2 + z2
+

x3

x2 + y2

x3

y2 + z2
+

y3

x2 + z2
+

z3

x2 + y2
≥ z3

y2 + z2
+

x3

x2 + z2
+

y3

x2 + y2

x3

y2 + z2
+

y3

x2 + z2
+

z3

x2 + y2
≥ 1

2

(y3 + z3

y2 + z2
+
x3 + z3

x2 + z2
+
x3 + y3

x2 + y2

)
What’s more, by the rearrangement inequality we have:

x3 + y3 ≥ xy2 + x2y

2x3 + 2y3 ≥ (x2 + y2)(x+ y)

x3 + y3

x2 + y2
≥ x+ y

2

Applying it to the previous inequality we obtain:

x3

y2 + z2
+

y3

x2 + z2
+

z3

x2 + y2
≥ 1

2

(y + z

2
+
x+ z

2
+
x+ y

2

)
Which is the thesis.

Problem 5
Numbers 0 and 2013 are written at two opposite vertices of a cube. Some real numbers are to be written at the
remaining 6 vertices of the cube. On each edge of the cube the difference between the numbers at its endpoints
is written. When is the sum of squares of the numbers written on the edges minimal?

Solution 1

Answer:

{x1, . . . , x6} =

{
2 · 2013

5
,

2 · 2013

5
,

2 · 2013

5
,

3 · 2013

5
,

3 · 2013

5
,

3 · 2013

5

}
The function

(x− a)2 + (x− b)2 + (x− c)2

attains its minimum when x = a+b+c
3 . Let’s call the vertices of the cube adjacent, if they are connected with an

edge. If S is minimal then numbers x1 . . . , x6 are such that any of them is the arithmetic mean of the numbers
written on adjacent vertices (otherwise, S can be made smaller). This gives us 6 equalities:

x1 = x4+x5

3

x2 = x4+x6

3

x3 = x5+x6

3

x4 = x1+x2+2013
3

x5 = x1+x3+2013
3

x6 = x2+x3+2013
3

3
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Here x1, x2, x3 are written on vertices that are adjacent to the vertex that contains 0. By solving this system
we get the answer.

0 x1

x2 x4

x3 x5

x6 2013

Solution 2

S = (x21 + x22 + x23 + (x4 − x1)2 + (x4 − x2)2 + (x5 − x1)2 + (x5 − x3)2 +

(x6 − x2)2 + (x6 − x3)2 + (2013− x4)2 + (2013− x5)2 + (2013− x6)2 =

=

(
1

2
x21 + (x4 − x1)2 +

1

2
(2013− x4)2

)
+

(
1

2
x21 + (x5 − x1)2 +

1

2
(2013− x5)2

)
+

+

(
1

2
x22 + (x4 − x2)2 +

1

2
(2013− x4)2

)
+

(
1

2
x22 + (x6 − x2)2 +

1

2
(2013− x6)2

)
+

+

(
1

2
x23 + (x5 − x3)2 +

1

2
(2013− x5)2

)
+

(
1

2
x23 + (x6 − x3)2 +

1

2
(2013− x6)2

)
Consider the expression

S1 =

(
1

2
x21 + (x4 − x1)2 +

1

2
(2013− x4)2

)
=

=
(x1

2

)2
+
(x1

2

)2
+ (x4 − x1)

2
+

(
2013− x4

2

)2

+

(
2013− x4

2

)2

and note that (x1
2

)
+
(x1

2

)
+ (x4 − x1) +

(
2013− x4

2

)
+

(
2013− x4

2

)
= 2013

If the sum of 5 numbers is fixed, then the sum of their squares is minimal if all of them are equal. It follows
that:

x1
2

= x4 − x1 =
2013− x4

2

from where we get x1 = 2 · 2013/5 and x4 = 3 · 2013/5. Values for x2, x3, x5, x6 can be obtained similarly.

Problem 6

Santa Claus has at least n gifts for n children. For i ∈ {1, 2, . . . , n}, the i–th child considers xi > 0 of these
items to be desirable. Assume that

1

x1
+ . . .+

1

xn
≤ 1.

Prove that Santa Claus can give each child a gift that this child likes.

4
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Solution

Evidently the age of the children is immaterial, so we may suppose

1 ≤ x1 ≤ x2 ≤ . . . ≤ xn.

Let us now consider the following procedure. First the oldest child chooses its favourite present and keeps it,
then the second oldest child chooses its favourite remaining present, and so it goes on until either the presents
are distributed in the expected way or some unlucky child is forced to take a present it does not like.
Let us assume, for the sake of a contradiction, that the latter happens, say to the k–th oldest child, where
1 ≤ k ≤ n. Since the oldest child likes at least one of the items Santa Claus has, we must have k ≥ 2. Moreover,
at the moment the k–th child is to make its decision, only k − 1 items are gone so far, which means that
xk ≤ k − 1.
For this reason, we have

1

x1
+ . . .+

1

xk
≥ 1

k − 1
+ . . .+

1

k − 1︸ ︷︷ ︸
k

=
k

k − 1
> 1,

contrary to our assumption. This proves that the procedure considered above always leads to a distribution of
the presents to the children of the desired kind, whereby the problem is solved.

Problem 7
A positive integer is written on a blackboard. Players A and B play the following game: in each move one has
to choose a divisor m of the number n written on the blackboard for which 1 < m < n and replace n with
n −m. Player A makes the first move, players move alternately. The player who can’t make a move loses the
game. For which starting numbers is there a winning strategy for player B?

Solution

Firstly note that for a given n exactly one player has a winning strategy. We’ll show by induction that B has
a winning strategy if n is odd.
First step of the induction is clear. Assume n is odd and B has a winning strategy for all odd integers smaller
than n. If player A can’t make a move, B wins. In other case, A chooses a divisor m. Note that m|n−m and
m < n−m, because m ≤ n

3 as n is odd. Therefore B may choose m (in particular can make a move) and pass
a number n− 2m to player A. The number is odd and smaller than n, so the thesis is correct by induction.
Now, let n be even, but not a power of 2. In that case n has an odd divisor greater than one. Player A may
choose an odd divisor and pass an odd integer to player B. Then we have a situation where B starts with an
odd integer, so A has a winning strategy.
Consider now n = 2k for positive integer k. Once again we’ll prove it by induction. Thesis: for odd k player B
has a winning strategy and for even k player A has a winning strategy. Base: for k = 1 player B has a winning
strategy as A can’t make the first move. For k = 2 player A may win, passing 2 to player B. The step of the
induction is split to two parts:

• Assume A has a winning strategy for 2k, then player B has one for 2k+1. Let n = 2k+1. Player A has to
choose a divisor 2l for 1 ≤ l ≤ k. If he chooses 2k, he passes n− 2k = 2k to player B. By induction player
B has a winning strategy. If A chooses a smaller divisor, passes an even integer, which is not a power of
2 as 2k < n − 2l < n = 2k+1. We have already proved that the starting player (in that case B) has a
winning strategy for such number.

• Assume B has a winning strategy for 2k, then player A has one for 2k+1. Let n = 2k+1. It is sufficient
for player A to choose a divisor 2k, then he passes number 2k to B. By induction second player (in this
case A) has a winning strategy.

To sum up: player B has a winning strategy for odd n and for n = 2 · 4k for non-negative integer k.

5
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Problem 8

There are n rooms in a sauna, each has unlimited capacity. No room may be attended by a female and a male
simultaneously. Moreover, males want to share a room only with males that they don’t know and females want
to share a room only with females that they know. Find the biggest number k such that any k couples can visit
the sauna at the same time, given that two males know each other if and only if their wives know each other.

Solution

First we’ll show it by induction that it is possible for n − 1 couples to visit the sauna at the same time. The
base of induction is clear.
Assume that n− 2 couples may be placed in n− 1 rooms. Take an additional couple. Let k be the number of
couples that they know and m be the number of rooms taken by males.
If m > k, there is a room with males that aren’t known by the additional guy. Then he may enter the room
and his wife may enter an empty room (n-th room).
If m ≤ k we have n− 2− k < n− 1−m. There are n− 2− k females that the additional woman doesn’t know
and n−1−m rooms taken by females (or empty). It means, that there is a room taken only by females (maybe
0) that the additional woman know, so she may join them. The additional man may enter the n-th room.
Now we only have to show that it is the biggest number. For n couples that don’t know each other, men need
to be placed in different rooms, so they need n rooms. Then there is no place for women.

Problem 9

In a country there are 2014 airports, no three of them lying on a line. Two airports are connected by a direct
flight if and only if the line passing through them divides the country in two parts, each with 1006 airports in
it. Show that there are no two airports such that one can travel from the first to the second, visiting each of
the 2014 airports exactly once.

Solution

Denote airports as points on the plane. Each airport that is a vertex of the convex hull of these points has only
one direct flight. (When we rotate the line that passes through such point the numbers of other points in the
half-planes change monotonically.) If an airport has only one direct flight then it can be only the starting point
or the endpoint of the journey that visits all 2014 airports. The convex hull contains at least 3 vertices, so there
are at least three airports that has only one direct flight. It means that such a journey is impossible.

Problem 10

A white equilateral triangle is split into n2 equal smaller triangles by lines that are parallel to the sides of the
triangle. Denote a line of triangles to be all triangles that are placed between two adjacent parallel lines that
form the grid. In particular, a triangle in a corner is also considered to be a line of triangles.
We are to paint all triangles black by a sequence of operations of the following kind: choose a line of triangles
that contains at least one white triangle and paint this line black (a possible situation with n = 6 after four
operations is shown in Figure 1; arrows show possible next operations in this situation). Find the smallest and
largest possible number of operations.

Solution

Answer: The smallest possible number of operations is n and the largest possible number of operations is
3n− 2.
If all the operations are done with lines parallel to one side of the triangle, then the game will end after n
operations. Let’s show by induction that the number of operations cannot be smaller. The basis for the
induction, n = 1, is evident, assume that for n = k at least k operations are necessary. For n = k + 1 there
will be an operation that colors the bottom right corner triangle, we can assume that it is done, coloring all the

6
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Figure 1

bottom line of the triangle (it can only increase the number of black squares). Order of operations is irrelevant,
if we do this operation as the first one then a white triangle with n = k remains for which at least k operations
are needed.
Now let’s show that it is possible to do 3n − 2 operations. If n = 1 then it is evident. Assume that we have
proved it for n = k. For n = k + 1 we start with three operations A, B and C coloring two rightmost corners
and the rightmost line. We have used 3 operations and reduced the field to the situation when n = k (Fig. 2).

C

A

B

A

C
C

C
C

C
C

C
C

C
B

Figure 2

At last we show that there cannot be more than 3n − 2 operations. If all n lines parallel to one side of the
triangle are colored then the whole triangle is colored black. Therefore the number of operations made before
the last operation cannot be greater than 3(n− 1), which gives the total number of operations not greater than
3n− 2.

Problem 11
In an acute triangle ABC with AC > AB, let D be the projection of A on BC, and let E and F be the
projections of D on AB and AC, respectively. Let G be the intersection point of the lines AD and EF . Let H
be the second intersection point of the line AD and the circumcircle of triangle ABC. Prove that

AG ·AH = AD2 .

7
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Solution 1

A

B CD

E

F

G

H

X

From similar right triangles we get

BE

AE
=

BD

AD
ED

AD

BD
ED

=

(
BD

AD

)2

and analogously

CF

AF
=

(
CD

AD

)2

.

Now, because AC > AB, the lines BC and EF intersect in a point X on the extension of segment BC beyond
B. Menelaus’ theorem gives

BX
CF

AF
= CX

BE

AE
, CX

DG

AG
= DX

CF

AF
, DX

BE

AE
= BX

DG

AG
.

Adding these relations and rerranging terms we arrive at

BC
DG

AG
= BD

CF

AF
+ CD

BE

AE
= BC

BD · CD
AD2

= BC
AD ·HD
AD2

= BC
HD

AD
,

whence

DG

AG
=
HD

AD
.

Hence follows

AD

AG
=
AG+DG

AG
=
AD +HD

AD
=
AH

AD
,

which is equivalent to the problem’s assertion.

8
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Solution 2

A

B CD

E

F

G

H

Inversion in the circle with centre A and radius AD maps the line BC and the circle with diameter AD, passing
through E and F , therefore B and E and C and F , therefore the circumcircle and the line EF and therefore
H and G onto one another. Hence the assertion follows.

Solution 3

Since ∠AED and ∠AFD are right angles, AFDE is cyclic. Then

∠AEF = ∠ADF.

Segment DF is an altitude in a right triangle ADC, so

∠ADF = ∠ACD,

and

∠ACD = ∠AHB

as angles inscribed in the circumcircle of 4ABC. Thus ∠AEF = ∠AHB, and BEGH is cyclic. Then by the
power of the point

AE ·AB = AG ·AH.

On the other hand, since DE is an altitude in a right triangle ADB,

AE ·AB = AD2.

It follows that AG ·AH = AD2, and the result follows.

Problem 12

A trapezoid ABCD with bases AB and CD is such that the circumcircle of the triangle BCD intersects the
line AD in a point E, distinct from A and D. Prove that the circumcircle of the triangle ABE is tangent to
the line BC.

9
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Solution 1

A B

CD

E

If point E lies on the segment AD it is sufficient to prove ∠CBE = ∠BAE. It is true, since both angles are
equal to 180◦ − ∠ADC. If point D lies on the segment AE we have ∠CBE = ∠CDE = ∠BAE, which proves
the thesis. In the end, if point A lies on the segment DE we have 180◦ − ∠CBE = ∠CDE = ∠BAE.

Solution 2

By ] denote a directed angle modulo π. Since ABCD is a trapezoid, ]BAE = ]CDE, and since BCDE is
cyclic, ]CDE = ]CBE. Hence ]BAE = ]CBE, and the result follows.

Problem 13
All faces of a tetrahedron are right-angled triangles. It is known that three of its edges have the same length s.
Find the volume of the tetrahedron.

Solution

A
B

C

D

s

s

s

10
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The three equal edges clearly cannot bound a face by themselves, for then this triangle would be equilateral
and not right-angled. Nor can they be incident to the same vertex, for then the opposite face would again be
equilateral.

Hence we may name the tetrahedron ABCD in such a way that AB = BC = CD = s. The angles ∠ABC and
∠BCD must then be right, and AC = BD = s

√
2. Suppose that ∠ADC is right. Then by the Pythagorean

theorem applied to ACD, we find AD = s. The reverse of the Pythagorean theorem applied to ABD, we see
that ∠DAB is right too. The quadrilateral ABCD then has four right angles, and so must be a square.

From this contradiction, we conclude that ∠ADC is not right. Since we already know that AC > CD, ∠CAD
cannot be right either, and the right angle of ACD must be ∠ACD. The Pythagorean theorem gives AD = s

√
3.

From the reverse of the Pythagorean theorem, we may now conclude that ∠ABD is right. Consequently, AB
is perpendicular to BCD, and the volume of the tetrahedron may be simply calculated as

AB ·BC · CD
6

=
s3

6
.

Problem 14

Circles α and β of the same radius intersect in two points, one of which is P . Denote by A and B, respectively,
the points diametrically opposite to P on each of α and β. A third circle of the same radius passes through P
and intersects α and β in the points X and Y , respectively.

Show that the line XY is parallel to the line AB.

Solution

Let M be the third circle, and denote by Z the point on M diametrically opposite to P .

Since ∠AXP = ∠PXZ = 90◦, the three points A, X, Z are collinear. Likewise, the three points B, Y , Z are
collinear. Point P is equidistant to the three vertices of triangle ABZ, for PA = PB = PZ is the common
diameter of the circles. Therefore P is the circumcentre of ABZ, which means the perpendiculars PX and
PY bisect the sides AZ and BZ. Ergo, X and Y are midpoints on AZ and BZ, which leads to the desired
conclusion XY ‖ AB.

Remark. Note that A and Z are symmetric with respect to PX, thus we immediately obtain AX = XZ, and
similarly BY = Y Z.

Problem 15

Four circles in a plane have a common center. Their radii form a strictly increasing arithmetic progression.
Prove that there is no square with each vertex lying on a different circle.

11
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Solution

A

B C

D

E
A′ C ′

First we prove the following lemma:

Lemma 1. If ABCD is a square then for arbitrary point E

EA2 + EC2 = EB2 + ED2.

Proof. Let A′, C ′ be projections of E on sides AB, and CD respectively. Then

EA2 + EC2 = (EA′2 +AA′2) + (EC ′2 + CC ′2)

EB2 + ED2 = (EA′2 +A′B2) + (EC ′2 + C ′D2)

As A′B = CC ′ and AA′ = C ′D then EA2 + EC2 = EB2 + ED2. Note that E does not have to be inside the
square, it is true for arbitrary point.

Now let O be the common center of circles and ABCD be a square with each vertex lying on a different circle,
assume that A lies on the largest circle. If a is the radius of the smallest circle and p is the difference of the
arithmetic progression then the radii of the circles are a, a+ p, a+ 2p and a+ 3p, these are also distances from
O to the vertices of the square ABCD, OA = a+ 3p. Consider the expression OA2 +OC2 −OB2 −OD2. Its
smallest possible value is attained when OC = a, therefore

OA2 +OC2 −OB2 −OD2 ≥ (a+ 3p)2 + a2 − (a+ p)2 − (a+ 2p)2 = 4p2 > 0,

what contradicts the lemma.

Problem 16

We call a positive integer n delightful if there exists an integer k, 1 < k < n, such that

1 + 2 + · · ·+ (k − 1) = (k + 1) + (k + 2) + · · ·+ n.

Does there exist a delightful number N satisfying the inequalities

20132013 <
N

20132013
< 20132013 + 4 ?

12
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Solution

Consider a delightful number n. Then there exists an integer x, 1 < x < n satisfying

x−1∑
i=1

i =

n∑
i=x+1

i =

n∑
i=1

i−
x∑
i=1

i

m

x2 = x+ 2 · (x− 1)x

2
= x+ 2

x−1∑
i=1

i =

x−1∑
i=1

i+

x∑
i=1

i =

n∑
i=1

i =
n(n+ 1)

2
.

Now n and n+ 1 are relatively prime so one of them is divisible by 2 and the other one must then be a perfect,
odd square, as x2 is on the LHS. Now consider the inequality(

20132013
)2
< n <

(
20132013

)2
+ 4 · 20132013 =

(
20132013 + 2

)2 − 4.

The only perfect square in this interval is clearly
(
20132013 + 1

)2
which is even. Therefore neither n nor n+ 1

can be an odd, perfect square. Hence no delightful number N satisfy the condition.

Problem 17
Let c and n > c be positive integers. Mary’s teacher writes n positive integers on a blackboard. Is it true that
for all n and c Mary can always label the numbers written by the teacher by a1, . . . , an in such an order that
the cyclic product (a1 − a2) · (a2 − a3) · . . . · (an−1 − an) · (an − a1) would be congruent to either 0 or c modulo
n?

Solution

Answer: Yes.
Solution: If some two of these n integers are congruent modulo n then Mary can choose them consecutively
and obtain a product divisible by n. Hence we may assume in the rest that these n integers written by the
teacher are pairwise incongruent modulo n. This means that they cover all residues modulo n.
If n is composite then Mary can find integers k and l such that n = kl and 2 ≤ k ≤ l ≤ n− 2. Let Mary denote
a1, a2, a3, a4 such that a1 ≡ k, a2 ≡ 0, a3 ≡ l+1 and a4 ≡ 1. The remaining numbers can be denoted in arbitrary
order. The product is divisible by n as the product of the first and the third factor is (k−0)·((l+1)−1) = kl = n.
If n is prime then the numbers ci, where i = 0, 1, . . . , n− 1, cover all residues modulo n. Let Mary denote the
numbers in such a way that ai ≡ c(n− i) for every i = 1, . . . , n. Then every factor in the product is congruent
to c modulo n, meaning that the product is congruent to cn modulo n. But cn ≡ c by Fermat’s theorem, and
Mary has done.

Problem 18
Find all pairs (x, y) of integers such that y3 − 1 = x4 + x2.

Solution

If x = 0, we get a solution (x, y) = (0, 1). This solution will turn out to be the only one. If (x, y) is a
solution then (−x, y) also is a solution therefore we can assume that x ≥ 1. We add 1 to both sides and factor:
y3 = x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1). We show that the factors x2 + x+ 1 and x2 − x+ 1 are co-prime.
Assume that a prime p divides both of them. Then p | x2 +x+ 1− (x2−x+ 1) = 2x. Since x2 +x+ 1 is always
odd, p | x. But then p does not divide x2 +x+ 1, a contradiction. Since x2 +x+ 1 and x2−x+ 1 have no prime
factors in common and their product is a cube, both of them are cubes by a consequence of the fundamental
theorem of arithmetic. Therefore, x2 + x+ 1 = a3 and x2 − x+ 1 = b3 for some non-negative integers a and b.

13
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As x ≥ 1 the first equation implies that a > x
2
3 . But since clearly b < a we get

x2−x+ 1 = b3 ≤ (a− 1)3 = a3− 3a2 + 3a− 1 ≤ a3− 3a2 + 3a ≤ a3− 2a2 = x2 +x+ 1− 2a2 < x2 +x+ 1− 2x
4
3

when 2a2 ≤ 3a2 − 3a, i.e. a2 ≥ 3a which holds for a ≥ 3. Clearly a = 2 is impossible and a = 1 means x = 0.
We got x2 − x+ 1 < x2 + x+ 1− 2x

4
3 which means 0 ≤ 2x− 2x

4
3 . Hence x = 1, but then 3 would be a cube, a

contradiction.

Remark. There are many ways to guess the factorization x4 + x2 + 1 = (x2 + x + 1)(x2 − x + 1). Writing
x4 + x + 1 = (x2 + 1)2 − x2 we immediately obtain it. Another way to see it is to write p(x) = x4 + x2 + 1
and notice that p(0) = 1 · 1, p(1) = 3 · 1, p(2) = 7 · 3, so there probably is a quadratic factor q(x) for which
q(0) = 1, q(1) = 3, q(2) = 7 (clearly, there cannot be linear factors). It is easy to see then that q(x) = x2 +x+ 1
and the factorization can be completed with the long division. One more way is to write x4 + x2 + 1 =
(x2 + ax+ b)(x2 + cx+ d) and compare the coefficients.
It is well-known that if s and t are co-prime integers whose product is a perfect kth power, then s and t both
are perfect kth powers. The proof goes like this. Let a = pα1

1 ...pαh

h , b = qβ1

1 ...qβ`

` and x = rγ11 ...r
γm
m be the prime

factorizations of a, b and x. In the prime factorization of xk, every exponent is divisible by k, so the same must
hold for the factorization of st. But s and t are co-prime, so the exponents of primes in s and t must be divisible
by k. Therefore s and t are perfect kth powers.

Problem 19
Let a0 be a positive integer and an = 5an−1 + 4, for all n ≥ 1. Can a0 be chosen so that a54 is a multiple of
2013?

Solution 1

Let xn =
an
5n

. Then x0 = a and 5nxn = an = 5an−1 + 4 = 5nxn−1 + 4. So xn = xn−1 +
4

5n
. By induction,

xn = x0 +

(
4

5
+

4

52
+ · · ·+ 4

5n

)
= a+

4

5

(
1 +

1

5
+ · · ·+ 1

5n−1

)
= a+

4

5
·

1− 1

5n

1− 1

5

= a+ 1− 1

5n
.

So an = 5nxn = 5n(a + 1) − 1. Now 2013 and 5n are relatively prime. So there is a b, 0 < b < 2013, also
relatively prime to 2013, such that 554 = 2013c+ b. To have 2013 as a factor of a54, it suffices to find an integer
y such that (a + 1)b − 1 = 2013y. But this is a linear Diophantine equation in a + 1 and y; it has an infinite
family of solutions, among them such that a+ 1 ≥ 2.

Solution 2

Denote f(x) = 5x + 4, this function is a bijection for residues modulo 2013, and it has an inverse g(x) =
1208x+ 1207. One can easily check that f(g(x)) ≡ g(f(x)) ≡ x (mod 2013).
Denote f0(x) = x and fn+1(x) = f(fn(x)), in other words fn(x) is an n-fold application of f to x. Take
a0 = g54(0), clearly a0 > 0 and

a54 = f54(a0) = f54(g54(0)) ≡ 0 (mod 2013).

Problem 20
Find all polynomials f with non-negative integer coefficients such that for all primes p and positive integers n
there exist a prime q and a positive integer m such that f(pn) = qm.

14
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Solution

Notice that among the constant polynomials the only solutions are P (t) = qm where q is a prime and m a
positive integer. Assume that

P (t) = akt
k + · · · a0,

where ak 6= 0 and a0, a1, . . . , ak are non-negative integers, is a polynomial that fullfills the conditions.
First consider the case a0 6= 1. Since a0 is a non-negative integer different from 1, there exists a prime p such
that p divides a0, and hence p divides P (pn) for all n. Thus P (pn) is a power of p for all positive integers n. If
there exists a k′ < k such that ak′ 6= 0, then for sufficiently large n we have

(pn)k > ak−1(pn)k−1 + · · ·+ a0 > 0,

and hence P (pn) 6≡ 0 (mod pnk), but this contradicts P (pn) = pm for some integer m since obviously P (pn) >
pnk and therefore m must be greater than nk. We conclude that in this case P (t) = akt

k, and it is easy to see
that only ak = 1 is a possibility.
Now consider the case a0 = 1. Let Q(t) = P (P (t)). Now Q must as well as P satisfy the conditions. Since
Q(0) = P (P (0)) = P (1) > 1 and Q is not constant, we know from the previous that Q(t) = tk, which contradicts
that Q(0) > 1. Hence there are no solutions in this case.
Thus all polynomials that satisfy the conditions are P (t) = tm where m is a positive integer, and P (t) = qm

where q is a prime and m is a positive integer.
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The 20 contest problems were submitted by 9 countries:

Country Proposed problems

Denmark 1 11 16 20

Estonia 17

Finland 2 18 19

Germany 6

Lithuania 3

Latvia 5 10 15

Poland 4 7 8 12

St. Petersburg 9

Sweden 13 14

The solution 2 of the problem 19 originate from the contest paper of the Germany team. Some solutions have
been added by coordinators.


