
Baltic Way 2011 Algebra A-1

Algebra
A-1 DEN

The real numbers x1, . . . , x2011 satisfy

x1 + x2 = 2x′

1 , x2 + x3 = 2x′

2 , . . . , x2011 + x1 = 2x′

2011

where x′

1, x
′

2, . . . , x
′

2011 is a permutation of x1, x2, . . . , x2011. Prove that x1 = x2 = · · · = x2011.

Solution 1 For convenience we call x2011 also x0. Let k be the largest of the numbers

x1, . . . , x2011, and consider an equation xn−1 + xn = 2k, where 1 ≤ n ≤ 2011. Hence we

get 2max(xn−1, xn) ≥ xn−1 + xn = 2k, so either xn−1 or xn, say xn−1, satisfies xn−1 ≥ k. Since

also xn−1 ≤ k, we then have xn−1 = k, and then also xn = 2k − xn−1 = 2k − k = k. That is,

in such an equation both variables on the left equal k. Now let E be the set of such equations,

and let S be the set of subscripts on the left of these equations. From xn = k ∀n ∈ S we get

|S| ≤ |E|. On the other hand, since the total number of appearances of these subscripts is 2|E|
and each subscript appears on the left in no more than two equations, we have 2|E| ≤ 2|S|.
Thus 2|E| = 2|S|, so for each n ∈ S the set E contains both equations with the subscript n

on the left. Now assume 1 ∈ S without loss of generality. Then the equation x1 + x2 = 2k

belongs to E , so 2 ∈ S. Continuing in this way we find that all subscripts belong to S, so
x1 = x2 = · · · = x2011 = k.

Solution 2 Again we call x2011 also x0. Taking the square on both sides of all the equations

and adding the results, we get

2011
∑

n=1

(xn−1 + xn)
2 = 4

2011
∑

n=1

x′2
n = 4

2011
∑

n=1

x2
n ,

which can be transformed with some algebra into

2011
∑

n=1

(xn−1 − xn)
2 = 0 .

Hence the assertion follows.
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Baltic Way 2011 Algebra A-2

A-2 NOR

Let f : Z → Z be a function such that, for all integers x and y, the following holds:

f(f(x)− y) = f(y)− f(f(x)).

Show that f is bounded, i.e. that there is a constant C such that

−C < f(x) < C

for all integers x.

First, setting y = f(x) one obtains f(0) = 0. Secondly y = 0 yields f(f(x)) = 0 for all x, thus

f(f(x)− y) = f(y).

Setting x = 0 yields f(−y) = f(y), and finally y := −z yields

f(f(x) + z) = f(−z) = f(z).

If f(x) = 0 for all x, then f is obviously bounded. If on the other hand there exists an x0 such

that f(x0) 6= 0, then, with x = x0, the last equality gives that f is periodic with period |f(x0)|,
and thus f must be bounded.
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Baltic Way 2011 Algebra A-3

A-3 NOR

A sequence a1, a2, a3, . . . of non-negative integers is such that an+1 is the last digit of a
n
n + an−1

for all n > 2. Is it always true that for some n0 the sequence an0
, an0+1, an0+2, . . . is periodic?

Since for n > 2, we actually consider the sequence mod 10, and ϕ(10) = 4, we have that the

recursive formula itself has a period of 4. Furthermore, the subsequent terms of the sequence

are uniquely determined by two consecutive terms. Therefore if there exist integers n0 > 2 and

k > 0 such that an0
= an0+4k and an0+1 = an0+4k+1, then the sequence is periodic from an0

on

with period 4k. Consider the pairs (a2+4j, a3+4j) for 0 ≤ j ≤ 100. Since there are at most 100

possible different amongst these, there have to exist 0 ≤ j1 < j2 ≤ 100 such that a2+4j1 = a2+4j2

and a3+4j1 = a3+4j2 . Choosing n0 := 2 + 4j1 we are done.

Remark: Note, that if a1, a2 both are between 0 and 9, then the recursion is invertible and the

sequence can be extended to the left. By invertibility it then follows that the original sequence

is actually periodic with the choice n0 = 1. Similar arguments show, that in general, n0 can be

chosen to be 3.
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Baltic Way 2011 Algebra A-4

A-4 RUS

Let a, b, c, d be non-negative reals such that a+ b+ c+ d = 4. Prove the inequality

a

a3 + 8
+

b

b3 + 8
+

c

c3 + 8
+

d

d3 + 8
≤ 4

9
.

By the means inequality we have a3 + 2 = a3 + 1 + 1 ≥ 3
3
√
a3 · 1 · 1 = 3a. Therefore it is

sufficient to prove the inequality

a

3a+ 6
+

b

3b+ 6
+

c

3c+ 6
+

d

3d+ 6
≤ 4

9
.

We can write the last inequality in the form

1

a+ 2
+

1

b+ 2
+

1

c+ 2
+

1

d+ 2
≥ 4

3
.

Now it follows by the harmonic and arithmetic means inequality:

1

4

( 1

a+ 2
+

1

b+ 2
+

1

c+ 2
+

1

d+ 2

)

≥ 4

(a+ 2) + (b+ 2) + (c+ 2) + (d+ 2)
=

4

4 + 2 + 2 + 2 + 2
=

1

3
.
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Baltic Way 2011 Algebra A-5

A-5 SAF

Let f : R → R be a function such that

f(f(x)) = x2 − x+ 1

for all real numbers x. Determine f(0).

Let f(0) = a and f(1) = b.

Then f(f(0)) = f(a).

But f(f(0)) = 02 − 0 + 1 = 1. So f(a) = 1. (1)

Also f(f(1)) = f(b).

But f(f(1)) = 12 − 1 + 1 = 1. So f(b) = 1. (2)

From (1), f(f(a)) = f(1).

But f(f(a)) = a2 − a+ 1. So a2 − a+ 1 = b. (3)

From (2), f(f(b)) = f(1), giving b2 − b+ 1 = b. So b = 1.

Putting b = 1 in (3) gives a = 0 or 1.

But a = 0 ⇒ f(0) = 0 ⇒ f(f(0)) = 0, contradicting (1).

So a = 1, i.e. f(0) = 1.
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Baltic Way 2011 Combinatorics C-1

Combinatorics
C-1 FIN

Let n be a positive integer. Prove that the number of lines which go through the origin and

precisely one other point with integer coordinates (x, y), 0 ≤ x, y ≤ n, is at least n2

4
.

Let n′ = [n/2] be the largest integer satisfying n′ ≤ n/2. We solve the problem with n2 − 3n′2

instead of n2/4, which is exactly what we are supposed to do if n is even and slighly better

than our original goal if n is odd.

A point is called relevant if both of its coordinates are integers between 1 and n, inclusively. A

relevant point is called tiny if both of its coordinates are at most n′ and large otherwise. Note

that there are n′2 tiny points. A line through the origin is called vicious if contains at least two

relevant points.

Consider any vicious line ℓ. Suppose that ℓ passes through exactly k vicious points and that

P = (x, y) is that one among them that is closest to the origin. Defining Pi = (x · i, y · i) for all
integers i, the relevant points on ℓ are P1, P2, . . . , Pk. Since k ≥ 2, it follows that P = P1 itself

is tiny. Now let k′ denote that positive integer for which P1, P2, . . . , Pk′ are the tiny points on ℓ,

whereasPk′+1, . . . , Pk are the large points on ℓ. Since Pk′+1 is not tiny, the point P2(k′+1) cannot

be relevant, for which reason k ≤ 2k′ + 1; in particular, it follows that k ≤ 3k′.

Summing the inequality just obtained over all vicious lines, we learn that the number of all

relevant points lying on vicious lines is at most three times the number of all tiny points, i.e.

at most 3n′2. Thus there are at least n2−3n′2 relevant points not belonging to any vicious line.

As expained in the beginning, this solves the problem.
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Baltic Way 2011 Combinatorics C-2

C-2 GER

Let T denote the 15-element set {10a+ b : a, b ∈ Z, 1 ≤ a < b ≤ 6}. Let S be a subset of T in

which all six digits 1, 2, . . . , 6 appear and in which no three elements together use all these six

digits. Determine the largest possible size of S.

Consider the numbers of T , which contain 1 or 2. Certainly, no 3 of them can contain all 6

digits and all 6 digits appear. Hence n ≥ 9.

Consider the partitions:

12, 36, 45,

13, 24, 56,

14, 26, 35,

15, 23, 46,

16, 25, 34.

Since every row is a partition of {1, 2, . . . , 6}, it contains all 6 digits, S can contain at most two

numbers of each of the 5 rows, i.e. n ≤ 10.

Now we will prove that n = 9 is the correct number. Therefore we assume that n = 10 and

will exclude this case by contradiction. Certainly, there is a digit, say 1, which does not appear

at least twice (otherwise at most 3 numbers are missing in S) and at most 4 times (otherwise

this digit does not appear in the members of S at all). Obviously, every row of the above set of

partitions contains exactly 2 members of S. W.l.o.g. assume that 12, 13 6∈ S and 16 ∈ S. Then

consider the following partitions, where bold-faced numbers are members of S and numbers in

italics are not:

12 ,36,45,

13 ,24,56,

14, 26, 35,

15, 23, 46,

16, 25, 34.

By 16, 45 ∈ S it follows 23 6∈ S and by 24, 36 ∈ S it follows 15 6∈ S. Now S is missing at least

2 members (15,23) of the partition 15, 23, 46, which is a contradiction.
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Baltic Way 2011 Combinatorics C-3

C-3 GER

In Greifswald there are three schools called A, B and C, each of which is attended by at least

one student. Among any three students, one from A, one from B and one from C, there are two

knowing each other and two not knowing each other. Prove that at least one of the following

holds:

• Some student from A knows all students from B.

• Some student from B knows all students from C.

• Some student from C knows all students from A.

Assume the contrary and let a be a student from A knowing as many students from B as

possible. As a does not know all students from B, there is a student b from B not known to

a. Similarly, we may pick a student c from C not known to b and then a student a′ from A

not known to c. Applying the assumption to the sets of students {a, b, c} and {a′, b, c}, we
learn that a and c know each other other, and so do a′ and b. As b knows a′ but not a, we

have a 6= a′. Moreover, the maximality condition imposed on a tells us that some student b′

from B is known to a but not to a′. Now if b′ and c knew each other, then any two students

from {a, b′, c} would know one another, which is not possible. Thus b′ and c do not know each

other, but this means that no two students from {a′, b′, c} know one another, which is likewise

impossible. Thereby the problem is solved.
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Baltic Way 2011 Combinatorics C-4

C-4 GER

Given a rectangular grid, split into m × n squares, a colouring of the squares in two colours

(black and white) is called valid if it satisfies the following conditions:

• All squares touching the border of the grid are coloured black.

• No four squares forming a 2× 2-square are coloured in the same colour.

• No four squares forming a 2 × 2-square are coloured in such a way that only diagonally

touching squares have the same colour.

Which grid sizes m× n (with m,n ≥ 3) have a valid colouring?

There exist a valid colouring iff n or m is odd.

Proof. If, without loss of generality, the number of rows is odd, colour every second row black,

as well as the boundary, and all other squares white. It is easy to check that this coloring is

valid.

If both n and m are even, there is no valid coloring. To prove this, consider the following graph

G: The vertices are the squares, and edges are drawn between two diagonally adjacent squares

A and B iff the two other squares touching both A and B at a side have the same color.

This graph of a valid coloring has the following properties:

• The corner squares have degree 1.

• Squares at a side of the grid have degree 0 or 2.

• Squares in the middle have degree 0, 2 or 4.

• The “forbidden patterns” are equivalent to the statement that no two edges of the graph

are intersecting.

• If you put a checkboard pattern on the grid, no edge connects squares of different colours.

• Hence, if m and n are even, the corner squares sharing a side of the grid are in different

connected components of the graph.

• Since the sum of degrees in each connected component is even, the opposing corner-squares

have to be in the same connected component.

• Hence, there is a path from each corner to the opposing one.

But those two paths can not exist without intersecting, thus some forbidden pattern exists

always, i.e. there is no valid colouring.
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Baltic Way 2011 Combinatorics C-5

C-5 RUS

Two persons play the following game with integers. The initial number is 20112011. The players

move in turns. Each move consists of subtraction of an integer between 1 and 2010 inclusive,

or division by 2011, rounding down to the closest integer when necessary. The player who first

obtains a non-positive integer wins. Which player has a winning strategy?

Answer: the second player wins.

Though the problem is taken from the recent article (A.Guo. Winning strategies for aperiodic

subtraction games // arXiv: 1108.1239v2), it could be known for the smaller numbers, say, for

2 instead of 2011.

The initial numbers N for which the second player has a winning strategy are those ones that

have odd numbers of trailing 0’s in base 2011 (i.e. if the biggest power of 2011 that divides N

is odd). The main difficulty of the problem is to invent this answer. The proof is trivial: each

move of the first player makes this biggest power to be even, and after that the second player

can make this power odd by a suitable move.
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Baltic Way 2011 Geometry G-1

Geometry
G-1 FIN

Let AB and CD be two diameters of the circle C. For an arbitrary point P on C, let R and S

be the feet of the perpendiculars from P to AB and CD, respectively. Show that the length of

RS is independent of the choice of P .

Solution. Let O be the centre of C. Then P , R, S, and O are points on a circle C ′ with diameter

OP , equal to the radius of C. The segment RS is a chord in this circle subtending the angle

BOD or a supplementary angle. Since the angle as well as radius of C ′ are independent of P ,

so is RS.

b

A

b

O

b

B

b
D

b

C

b
P

b

R

bS
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Baltic Way 2011 Geometry G-2

G-2 DEN

Let P be a point inside a square ABCD such that PA : PB : PC is 1 : 2 : 3. Determine the

angle ∠BPA.

First Solution. Rotate the triangle ABP by 90◦ around B such that A goes to C and P is

mapped to a new point Q. Then ∠PBQ = ∠PBC +∠CBQ = ∠PBC +∠ABP = 90◦. Hence

the triangle PBQ is an isosceles right-angled triangle, and ∠BQP = 45◦. By Pythagoras

PQ2 = 2PB2 = 8AP 2. Since CQ2 + PQ2 = AP 2 + 8AP 2 = 9AP 2 = PC2, by the converse

Pythagoras PQC is a right-angled triangle, and hence

∠BPA = ∠BQC = ∠BQP + ∠PQC = 45◦ + 90◦ = 135◦.

b

D

b

C

b
A

b
B

b

P

b Q

45
◦

Second Solution. Let X and Y be the feet of the perpendiculars drawn from A and C to PB.

Put x = AX and y = XP . Suppose without loss of generality that PA = 1, PB = 2, and

PC = 3. Since the right angled triangles ABX and BCY are congruent, we have BY = x and

CY = 2 + y. Applying Pythagoras’ Theorem to the triangles APX and PY C, we get

x2 + y2 = 1 and (2− x)2 + (2 + y)2 = 9.

Substituting the former equation into the latter, we infer x = y, which in turn discloses

∠BPA = 135◦.

b

D

b

C

b
A

b
B

b

P
b

X

b

Y
x

y

x
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Baltic Way 2011 Geometry G-3

G-3 DEN

Let E be an interior point of the convex quadrilateral ABCD. Construct triangles △ABF ,

△BCG, △CDH and △DAI on the outside of the quadrilateral such that the similarities

△ABF ∼ △DCE, △BCG ∼ △ADE, △CDH ∼ △BAE and △DAI ∼ △CBE hold. Let P ,

Q, R and S be the projections of E on the lines AB, BC, CD and DA, respectively. Prove

that if the quadrilateral PQRS is cyclic, then

EF · CD = EG ·DA = EH · AB = EI · BC .

Solution. We consider oriented angles modulo 180◦. From the cyclic quadrilaterals APES,

BQEP , PQRS, CREQ, DSER and △DCE ∼ △ABF we get

∠AEB = ∠EAB + ∠ABE = ∠ESP + ∠PQE

= ∠ESR + ∠RSP + ∠PQR + ∠RQE

= ∠ESR + ∠RQE = ∠EDC + ∠DCE

= ∠DEC = ∠AFB ,

so the quadrilateral AEBF is cyclic. By Ptolemy we then have

EF · AB = AE · BF +BE · AF .

This transforms by AB : BF : AF = DC : CE : DE into

EF · CD = AE · CE +BE ·DE .

A

B

C

D

E

F

G

H

I

P

Q

R

S

Since the expression on the right of this equation is invariant under cyclic permutation of the

vertices of the quadrilateral ABCD, the asserted equation follows immediately.
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Baltic Way 2011 Geometry G-4

G-4 POL

The incircle of a triangle ABC touches the sides BC, CA, AB at D, E, F , respectively. Let

G be a point on the incircle such that FG is a diameter. The lines EG and FD intersect at

H. Prove that CH ‖ AB.

Solution. We work in the opposite direction. Suppose that H ′ is the point where DF intersect

the line through C parallel to AB. We need to show that H ′ = H. For this purpose it suffices

to prove that E, G, H ′ are collinear, which reduces to showing that if G′ 6= E is the common

point of EH ′ and the incircle, then G′ = G.
6

A B

C

DE

F

G

H

Note thatH ′ and B lie on the same side of AC. Hence CH ′ ‖ AB gives ∠ACH ′ = 180◦−∠BAC.

Also, some homothety with center D maps the segment BF to the segment CH ′. Thus the

equality BD = BF implies that CH ′ = CD = CE, i.e. the triangle ECH ′ is isosceles and

∠H ′EC = 1
2
(180◦ − ∠ECH ′) = 1

2
∠BAC.

But G′ and H ′ lie on the same side of AC, so ∠G′EC = ∠H ′EC and consequently

∠G′FE = ∠G′EC = ∠H ′EC = 1
2
∠BAC

so that

∠G′FA = ∠G′FE + ∠EFA = 1
2
∠BAC + 1

2
(180◦ − ∠FAE) = 90◦.

Hence FG′ is a diameter of the incircle and the desired equality G′ = G follows.

Remark. A similar proof also works in the forward direction: one may compute ∠EHD =
1
2
∠ACB. Hence H lies on the circle centred at C that passes through D and E. Consequently

the triangle EHC is isosceles, wherefore

∠ECH = 180◦ − 2∠GEC = 180◦ − ∠BAC.

Thus the lines AB and CH are indeed parallel.
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Baltic Way 2011 Geometry G-5

G-5 POL

Let ABCD be a convex quadrilateral such that ∠ADB = ∠BDC. Suppose that a point E on

the side AD satisfies the equality

AE · ED +BE2 = CD · AE.

Show that ∠EBA = ∠DCB.

Solution. Let F be the point symmetric to E with respect to the line DB. Then the equality

∠ADB = ∠BDC shows that F lies on the line DC, on the same side of D as C. Moreover, we

have AE · ED < CD · AE, or FD = ED < CD, so in fact F lies on the segment DC.

A B

C

D

E

F

Note now that triangles DEB and DFB are congruent (symmetric with respect to the line

DB), so ∠AEB = ∠BFC. Also, we have

BE2 = CD · AE − AE · ED = AE · (CD − ED) = AE · (CD − FD) = AE · CF.

Therefore
BE

AE
=

CF

BE
=

CF

BF
.

This shows that the triangles BEA and CFB are similar, which gives ∠EBA = ∠FCB =

∠DCB, as desired.
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Baltic Way 2011 Number Theory N-1

Number Theory
N-1 DEN

Let a be any integer. Define the sequence x0, x1, . . . by x0 = a, x1 = 3 and

xn = 2xn−1 − 4xn−2 + 3 for all n > 1.

Determine the largest integer ka for which there exists a prime p such that pka divides x2011−1.

Let yn = xn − 1. Hence

yn = xn−1 = 2(yn−1+1)−4(yn−2+1)+3−1 = 2yn−1−4yn−2 = 2(2yn−2−4yn−3)−4yn−2 = −8yn−3

for all n > 2. Hence

x2011 − 1 = y2011 = −8y2008 = · · · = (−8)670y1 = 22011.

Hence k = 2011.
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Baltic Way 2011 Number Theory N-2

N-2 DEN

Determine all positive integers d such that whenever d divides a positive integer n, d will also

divide any integer obtained by rearranging the digits of n.

Answer: d = 1, d = 3 or d = 9. It is known that 1, 3 and 9 have the given property. Assume

that d is a k digit number such that whenever d divides an integer n, d will also divide any

integer m having the same digits as n . Then there exists a k + 2 digit number 10a1a2 . . . ak

which is divisible by d. Hence a1a2 · · · ak10 and a1a2 · · · ak01 are also divisible by d. Since

a1a2 · · · ak10− a1a2 · · · ak01 = 9, d divides 9, and hence d = 1, d = 3 or d = 9 as stated.
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Baltic Way 2011 Number Theory N-3

N-3 GER

Determine all pairs (p, q) of primes for which both p2 + q3 and q2 + p3 are perfect squares.

Answer. There is only one such pair, namely (p, q) = (3, 3).

Proof. Let the pair (p, q) be as described in the statement of the problem.

1.) First we show that p 6= 2. Otherwise, there would exist a prime q for which q2 + 8 and

q3 + 4 are perfect squares. Because of q2 < q2 + 8, the second condition gives (q + 1)2 6 q2 + 8

and hence q 6 3. But for q = 2 or q = 3 the expression q3 + 4 fails to be a perfect square.

Hence indeed p 6= 2 and due to symmetry we also have q 6= 2.

2.) Next we consider the special case p = q. Then p2(p + 1) is a perfect square, for which

reason there exists an integer n satisfying p = n2 − 1 = (n + 1)(n − 1). Since p is prime, this

factorization yields n = 2 and thus p = 3. This completes the discussion of the case p = q.

3.) So from now on we may suppose that p and q are distinct odd primes. Let a be a positive

integer such that p2 + q3 = a2, i.e. q3 = (a + p)(a − p). If both factors a + p and a − p were

divisible by q, then so were their difference 2p, which is absurd. So by uniqueness of prime

factorization we have a+p = q3 and a−p = 1. Subtracting these equations we learn q3 = 2p+1.

Due to symmetry we also have p3 = 2q + 1. Now if p < q, then q3 = 2p + 1 < 2q + 1 = p3,

which gives a contradiction, and the case q < p is excluded similarly.

Thereby the problem is solved.
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Baltic Way 2011 Number Theory N-4

N-4 FIN

Let p 6= 3 be a prime number. Show that there is a non-constant arithmetic sequence of positive

integers x1, x2, . . . , xp such that the product of the terms of the sequence is a cube.

Let a1, a2, . . . , ap be any arithmetic sequence of positive integers and let P be the product of

the terms of this sequence. For any n, the sequence P na1, P
na2, . . . , P

nap is also arithmetic,

and the product of terms is P np+1. Now either p ≡ 1 mod 3 or p ≡ −1 mod 3. In the former

case, 2p + 1 = 3q for some q and in the latter case, 1p + 1 = 3q for some q. So we can choose

either xi = P 2ai or xi = Pai to obtain the sequence we are looking for.
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Baltic Way 2011 Number Theory N-5

N-5 POL

An integer n ≥ 1 is called balanced if it has an even number of distinct prime divisors. Prove

that there exist infinitely many positive integers n such that there are exactly two balanced

numbers among n, n+ 1, n+ 2 and n+ 3.

We argue by contradiction. Choose N so large that no n ≥ N obeys this property. Now we

partition all integers ≥ N into maximal blocks of consecutive numbers which are either all

balanced or not. We delete the first block from the following considerations, now starting from

N ′ > N . Clearly, by assumption, there cannot meet two blocks with length ≥ 2. It is also

impossible that there meet two blocks of length 1 (remember that we deleted the first block).

Thus all balanced or all unbalanced blocks have length 1. All other blocks have length 3, at

least.

Case 1: All unbalanced blocks have length 1.

We take an unbalanced number u > 2N ′ + 3 with u ≡ 1 (mod 4) (for instance u = p2 for an

odd prime p). Since all balanced blocks have length ≥ 3, u − 3, u − 1, and u + 1 must be

balanced. This implies that (u − 3)/2 is unbalanced, (u − 1)/2 is balanced, and (u + 1)/2 is

again unbalanced. Thus {(u− 1)/2} is an balanced block of length 1 — contradiction.

Case 2: All balanced blocks have length 1.

Now we take a balanced number b > 2N ′+3 with b ≡ 1 (mod 4) (for instance b = p2q2 for dis-

tinct odd primes p, q). By similar arguments, (b−3)/2 is balanced, (b−1)/2 is unbalanced, and

(b+1)/2 is again balanced. Now the balanced block {(b−1)/2} gives the desired contradiction.
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