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1 Algebra

1. A finite collection of positive real numbers (not necessarily distinct) is balanced if each number
is less than the sum of the others. Find all m ≥ 3 such that every balanced finite collection of m
numbers can be split into three parts with the property that the sum of the numbers in each part
is less than the sum of the numbers in the two other parts.

S o l u t i o n.
Answer: The partition is always possible precisely when m 6= 4.
For m = 3 it is trivially possible, and for m = 4 the four equal numbers g, g, g, g provide a

counter-example. Henceforth, we assume m ≥ 5.
Among all possible partitions A tB t C = {1, . . . ,m} such that

SA ≤ SB ≤ SC ,

select one for which the difference SC − SA is minimal. If there are several such, select one so as to
maximise the number of elements in C. We will show that SC < SA+SB, which is clearly sufficient.

If C consists of a single element, this number is by assumption less than the sum of the remaining
ones, hence SC < SA + SB holds true.

Suppose now C contains at least two elements, and let gc be a minimal number indexed by a
c ∈ C. We have the inequality

SC − SA ≤ gc ≤
1

2
SC .

The first is by the minimality of SC−SA, the second by the minimality of gc. These two inequalities
together yield

SA + SB ≥ 2SA ≥ 2(SC − gc) ≥ SC .

If either of these inequalities is strict, we are finished.
Hence suppose all inequalities are in fact equalities, so that

SA = SB =
1

2
SC = gc.

It follows that C = {c, d}, where gd = gc. If A contained more than one element, we could increase
the number of elements in C by creating instead a partition

{1, . . . ,m} = {c} tB t (A ∪ {d}),

resulting in the same sums. A similar procedure applies to B. Consequently, A and B must be
singleton sets, whence

m = |A|+ |B|+ |C| = 4.
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2. A 100 × 100 table is given. For each k, 1 ≤ k ≤ 100, the k-th row of the table contains the
numbers 1, 2, . . . , k in increasing order (from left to right) but not necessarily in consecutive cells;
the remaining 100− k cells are filled with zeroes. Prove that there exist two columns such that the
sum of the numbers in one of the columns is at least 19 times as large as the sum of the numbers
in the other column.

S o l u t i o n.
Observe that the sum of numbers in the first column is at most 1 · 100 = 100, the sum in the

first and second columns is at most 1 · 100 + 2 · 99, the sum in the first, second and third columns

is at most 1 · 100 + 2 · 99 + 3 · 98, etc. But the sum of all nonzero numbers equals
100∑
i=1

i(101 − i),

therefore the sum in the columns from 31th to 100th is at least

100∑
i=31

i(101− i) =
70∑
i=1

i(101− i) = 101
70∑
i=1

i−
70∑
i=1

i2 = 35 · 71(101− 141/3) = 70 · 27 · 71.

Therefore one of these columns has a sum at least 27 · 71 = 1917. Therefore the ratio of sums in
this column and in the first one is more that 19.

3. Let a, b, c, d be positive real numbers such that abcd = 1. Prove the inequality

1√
a+ 2b+ 3c+ 10

+
1√

b+ 2c+ 3d+ 10
+

1√
c+ 2d+ 3a+ 10

+
1√

d+ 2a+ 3b+ 10
≤ 1.

S o l u t i o n.
Let x, y, z, t be positive numbers such that a = x4, b = y4, c = z4, d = t4.
By AM-GM ineguality x4 + y4 + z4 + 1 ≥ 4xyz, y4 + z4 + 1 + 1 ≥ 4yz and z4 + 1 + 1 + 1 ≥ 4z.

Therefore we have the following estimation for the first fraction

1√
x4 + 2y4 + 3z4 + 10

≤ 1√
4xyz + 4yz + 4z + 4

=
1

2
√
xyz + yz + z + 1

.

Transform analogous estimations for the other fractions:

1√
b+ 2c+ 3d+ 10

≤ 1

2
√
yzt+ zt+ t+ 1

=
1

2
√
t
√
yz + z + 1 + xyz

=

√
xyz

2
√
xyz + yz + z + 1

;

1√
c+ 2d+ 3a+ 10

≤ 1

2
√
ztx+ tx+ x+ 1

=
1

2
√
tx
√
z + 1 + xyz + yz

=

√
yz

2
√
xyz + yz + z + 1

;

1√
d+ 2a+ 3b+ 10

≤ 1

2
√
txy + xy + y + 1

=
1

2
√
txy
√
1 + xyz + yz + z

=

√
z

2
√
xyz + yz + z + 1

.

Thus, the sum does not exceed

1 +
√
xyz +

√
yz +

√
z

2
√
xyz + yz + z + 1

.

It remains to apply inequality
√
α+
√
β+
√
γ+
√
δ ≤ 2

√
α + β + γ + δ, which can be easily proven

by taking squares or derived from inequality between arithmetical and quadratic means.
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4. Find all functions f : [0,+∞) → [0,+∞), such that for any positive integer n and for any
non-negative real numbers x1, . . . , xn

f(x21 + · · ·+ x2n) = f(x1)
2 + · · ·+ f(xn)

2.

S o l u t i o n.
Answer: the functions f(x) = 0 and f(x) = x.
A first observation is that

f(1) = f(12) = f(1)2,

so that f(1) is either 0 or 1.
Assume first that f(1) = 0. For each positive integer n, we find

f(n) = f(n · 12) = nf(1)2 = 0.

Given an arbitrary x, find y so that x2 + y2 becomes a positive integer n. Then

f(x)2 + f(y)2 = f(x2 + y2) = f(n) = 0.

Consequently, f(x) = 0 for all x.
Now assume f(1) = 1. We shall prove that f(x) = x for all x. For each positive integer n, we

find
f(n) = f(n · 12) = nf(1)2 = n.

For a non-negative rational number p
q
, we find

p2 = f(p2) = f

(
q2 ·

(
p

q

)2
)

= q2f

(
p

q

)2

,

hence f(x) = x also for rational numbers.
Finally, let x be an irrational number. Select a rational number p

q
> x. Choosing y so that

x2 + y2 = p2

q2
, we deduce

p2

q2
= f

(
p2

q2

)
= f(x2 + y2) = f(x)2 + f(y)2 ≥ f(x)2,

hence f(x) ≤ p
q
. Next, select a (positive) rational number r

s
<
√
x, i.e. r2

s2
< x. Choosing z so that

r2

s2
+ z2 = x, we deduce

f(x) = f

(
r2

s2
+ z2

)
= f

(r
s

)2
+ f(z)2 =

r2

s2
+ f(z)2 ≥ r2

s2
,

hence f(x) ≥ r2

s2
. Together, these two bounds for f(x) imply f(x) = x, and we are finished.

R ema r k o f t h e P r o b l em c omm i t t e e. The main part of this solution is the proof of well
known fact that if an additive function is non negative (for non negative arguments) then it is linear.
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5. A polynomial f(x) with real coefficients is called generating, if for each polynomial ϕ(x) with
real coefficients there exist a positive integer k and polynomials g1(x), . . . , gk(x) with real coefficients
such that

ϕ(x) = f(g1(x)) + · · ·+ f(gk(x)).

Find all generating polynomials.

S o l u t i o n.
Answer: the generating polynomials are exactly the polynomials of odd degree.
Take an arbitrary polynomial f . We call a polynomial good if it can pe represented as

∑
f(gi(x))

for some polynomials gi. It is clear that the sum of good polynomials is good, and if φ is a good
polynomial then each polynomial of the form φ(g(x)) is good also. Therefore for the proof that f
is generating it is sufficient to show that x is good polynomial. Consider two cases.

1) Let the degree n of f is odd. Check that x is good polynomial. Observe that by substitutions
of the form f(ux) we can obtain a good polynomial φn of degree n with leading coefficient 1, and
a good polynomial ψn of degree n with leading coefficient −1 (because n is odd). Then for each a
a polynomial φn(x+ a) + ψn(x) is good. It is clear that its coefficient of xn equals 0; moreover, by
choosing appropriate a we can obtain a good polynomial φn−1 of degree n−1 with leading coefficient
1, and a good polynomial ψn−1 with leading coefficient −1. Continuing in this way we will obtain
a good poynomial φ1(x) = x+ c. Then φ1(x− c) = x is also good.

2) Let the degree n of f is even. Prove that f(x) is not generating. It follows from the observation
that the degree of every good polynomial is even in this case. Indeed, the degree of each polynomial
f(gi) is even and the leading coefficient has the same sign as the leading coefficient of f . Therefore
the degree of polynomial

∑
f(gi(x)) is even.
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2 Combinatorics

6. Let n be a positive integer. Elfie the Elf travels in R3. She starts at the origin: (0, 0, 0). In each
turn she can teleport to any point with integer coordinates which lies at distance exactly

√
n from

her current location. However, teleportation is a complicated procedure. Elfie starts off normal but
she turns strange with her first teleportation. Next time she teleports she becomes normal again,
then strange again... etc.

For which n can Elfie travel to any given point with integer coordinates and be normal when
she gets there?

S o l u t i o n.
Answer: there are no such n.
We colour all the points in Z3 white and black: The point (x, y, z) is colored white if x+y+z ≡2 0

and black if if x+ y + z ≡2 1.
After the first move Elfie is at a point (a, b, c) where a2 + b2 + c2 = n. Thus, a + b + c ≡2

a2 + b2 + c2 = n.
Now, if n is even then (a, b, c) is white. Thus, in that case Elfie only jumps between white points.
On the other hand, if n is odd, then (a, b, c) is certainly black. And one can easily see that Elfie

alternates between black and white squares after each move. But since Elfie is normal after even
number of moves, and is then on a white point, she can never reach any black point being normal.
Thus, there no n such that Elfie can travel to any given point and be normal when she gets there.

7. On a 16 × 16 torus as shown all 512 edges are colored red or
blue. A coloring is good if every vertex is an endpoint of an even
number of red edges. A move consists of switching the color of each
of the 4 edges of an arbitrary cell. What is the largest number of
good colorings such that none of them can be converted to another
by a sequence of moves?

S o l u t i o n.
Answer: 4. Representatives of the equivalence classes are: all blue, all blue with one longitudinal

red ring, all blue with one transversal red ring, all blue with one longitudinal and one transversal
red ring.

First, show that these four classes are non equivalent. Consider any ring transversal or longitu-
dinal and count the number of red edges going out from vertices of this ring in the same halftorus.
This number can not be changed mod 2.

Now we show that each configuration can be transformed to one of these four classes. We suggest
two independent reasoning.

Scanning of the square.
Cut the torus up in a square 16 × 16. In order to restore the initial torus we will identify the

opposite sides of the square, but we will do it in the end of solution. Now we will work with the
square. It is clear that during all recolorings each vertex of torus has even red degree. The same is
true for the degrees of the inner vertices of the 16× 16 square when we deal with it instead of the
torus.

Scan all cells of this square one by one from left to right and from bottom to top. For convenience
we may think that in each moment the scanned area is colored grey. First we take bottom left corner
cell (a1 in chess notations) and color it grey. Then we consider the next cell (b1 in chess notations)
color it grey and if the edge between the cells a1 and b1 is red, change the colors of the cell b1 edges.



6 Combinatorics

We obtain a grey area with no red edges in its interior. After that when we scan each new cell we
append this cell to the grey figure and if it is necessary change the colors of edges of the new cell
to make the color of all new edges in the grey area blue.

The latter is always possible because the new cell have either one common edge with the grey
figure (as in the case “a1–b1” above) or two common edges. For example let grey figure consist of
the first row of the square and a2 cell. When we append the cell b2 to the grey figure two edges
of its lower left corner vertex already belong to the grey figure, they are blue. Therefore the other
two edges a2–b2 and b1–b2 have the same color and we can make them both blue (if they are not)
by recoloring the edges of cell b2.

So by doing that with all cells of the square we obtain 16× 16 square with blue edges inside it.
Now its time to recall that the sides of the square should be identified, and the red degree of each
vertex of torus is even. It follows that the whole (identified) vertical sides of the square are either
red or blue, and the same for horizontal sides.

Deformations of red loops (sketch).
To see that any configuration can be made into one of the above four configurations it is most

clear to cut the torus up in a square with opposite edges identified.
Since the red degree of each vertex is even we can always find a loop consisting of red edges only.

Now, suppose that one can make a (simple) red loop that does not cross the boundary of the square.
We can change the color of this loop by changing one by one the colors of unit squares inside it. In
the remaining configuration every vertex is still an endpoint of an even number of red edges and
we can repeat the operation. So by doing that to every red loop we are left with a configuration
where one can not make red loops that do not intersect the boundary. Second, any red loop left
that passes through more than one boundary vertex can be deformed into a loop containing only
one boundary vertex. Finally, any two loops crossing the same side of the square can be removed
by changing colors of all unit squares between these loops. Thus, we are left with only the four
possibilities mentioned.

8. A graph has N vertices. An invisible hare sits in one of the vertices. A group of hunters tries
to kill the hare. In each move all of them shoot simultaneously: each hunter shoots at a single
vertex, they choose the target vertices cooperatively. If the hare was in one of the target vertices
during a shoot, the hunt is finished. Otherwise the hare can stay in its vertex or jump to one of the
neighboring vertices.

The hunters know an algorithm that allows them to kill the hare in at most N ! moves. Prove
that then there exists an algorithm that allows them to kill the hare in at most 2N moves.

S o l u t i o n.
Let hunters apply optimal (fastest) algorithm. Let say that a vertex has a smell of a hare, if

there exists an initial vertex and a sequence of moves of the hare for which the hare is still alive and
now occupies this vertex. After every shoot mark the set of all the vertices that have a smell of a
hare. In the beginning all the vertices of the graph have a smell of hare, and after finish of hunting
this set is empty. The idea is that in optimal strategy these sets can not repeat!

Indeed, the hunting does not imply feedback, the hunters’ shoots do not depend on hare’s moves
because the hunters try to foresee all possible moves of hare. So if a set of vertices A appears after
the k-th shoot and once again after the m-th shoot, then then the strategy is not optimal because
all shoots form k-th to (m− 1)-th can be omitted with the same result of hunting.

Since it is possible to mark at most 2N sets the hunting will finish in at most 2N − 1 shoots.



Combinatorics 7

9. Olga and Sasha play a game on an infinite hexagonal grid. They take turns in placing a stone
on a free hexagon of their choice. Olga starts the game. Just before the 2018th stone is placed, a
new rule comes into play. A stone may now be placed only on those free hexagons having at least
two occupied neighbors.

•
•

•
•A player loses when she or he either is unable to make a move, or has filled a

pattern of the rhomboid shape as shown (rotated in any possible way). Determine
which player, if any, possesses a winning strategy.

S o l u t i o n.
Answer: Olga has a winning strategy.
The game cannot go on forever. Draw a large hexagon enclosing all 2017 counters in play after

the 2017th move, as in Figure ??. While it will be possible to place future counters in the hexagonal
frame at distance 1 from the shaded part (i.e. immediately surrounding it), where D and E are
located, it will be impossible to reach cells at distance 2 from the shaded part, where F is located.
Indeed, in order to place a counter at F , first counters must be placed on cells D and E.

D E
F

Figure 1: A large shaded hexagon enclosing all 2017 counters in play after the 2017th move.

Assume that the cells E1, E2, . . . , En to the right of E contain counters, but the next cell to the
right is En+1 and it is empty. Observe that the counter on En−1 has been placed before the counter
on En, because otherwise the forbidden rhombus is formed by the cells En−1, En and two ancestors
of En in the previous row. By analogous reasoning considering the moment of placing the counter
on En−1 one can prove that the counter on En−2 has been placed before the counter on En−1, etc.
Thus we conclude that the counter on D has been placed before the counter on E. But changing
the direction of our reasoning to the left we similarly conclude that counter on E has been placed
before the counter on D. A contradiction.

Now, let Olga place her first counter in any hexagon H, and then respond to each of Sasha’s
successive moves by symmetry, choosing to place her counter on the reflexion in H of his chosen
hexagon (in other words, diametrically opposite to his with respect to H). It is clear that the
gameplay will be completely symmetrical after each of Olga’s moves. Hence she may respond, even
under the additional rule, to any move Sasha might make. It is also evident that she will never
complete a forbidden rhombus if Sasha did not already do so before. Hence Olga is always certain
to have a legal move at her disposal, and so will eventually win.
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10. The integers from 1 to n are written, one on each of n cards. The first player removes one
card. Then the second player removes two cards with consecutive integers. After that the first
player removes three cards with consecutive integers. Finally, the second player removes four cards
with consecutive integers. What is the smallest value of n for which the second player can ensure
that he completes both his moves?

S o l u t i o n.
Answer: n = 14.
At first, let’s show that for n = 13 the first player can ensure that after his second move no 4

consecutive numbers are left. In the first move he can erase number 4 and in the second move he
can ensure that numbers 8, 9 and 10 are erased. No interval of length 4 is left.

If n = 14 the second player can use the following strategy. Let the first player erase number k
in his first move, because of symmetry assume that that k ≤ 7. If k ≥ 5 then the second player can
erase k+1 and k+2 and there are two intervals left of length at least 4: 1..(k− 1) and (k+3)..14,
but the first player can destroy at most one of them. But if k ≤ 4, then the second player can
erase numbers 9 and 10 in his first move and again there are two intervals left of length at least 4:
(k + 1)..8 and 11..14.
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3 Geometry

11. The points A, B, C, D lie, in this order, on a circle ω, where AD is a diameter of ω.
Furthermore, AB = BC = a and CD = c for some relatively prime integers a and c. Show that if
the diameter d of ω is also an integer, then either d or 2d is a perfect square.

S o l u t i o n.
By Pythagoras, the lengths of the diagonals of quadrangle ABCD are

√
d2 − a2 and

√
d2 − c2.

Applying Ptolemaios’ Theorem to the quadrilateral ABCD gives

√
d2 − a2 ·

√
d2 − c2 = ab+ ac,

which after squaring and simplifying becomes

d3 − (2a2 + c2)d− 2a2c = 0.

Then d = −c is a root of this equation, hence, c+d is a positive factor of the left-hand side. Hence,
the remaining factor (which is quadratic in d) must vanish, and we obtain d2 = cd + 2a2. Let
e = 2d− c. The number c2 + 8a2 = (2d− c)2 = e2 is a square, and it follows that 8a2 = e2 − c2. If
e and c both were even, then by 8 | (e2 − c2) we also have 16 | (e2 − c2) = 8a2 which implies 2 | a,
a contradiction to the fact that a and c are relatively prime. Hence, e and c both must be odd.
Moreover, e and c are obviously relatively prime. Consequently, the factors on the right-hand side
of 2a2 = e−c

2
· e+c

2
are relatively prime. It follows that d = e+c

2
is a perfect square or twice a perfect

square.

12. The altitudes BB1 and CC1 of an acute triangle ABC intersect in point H. Let B2 and C2

be points on the segments BH and CH, respectively, such that BB2 = B1H and CC2 = C1H. The
circumcircle of the triangle B2HC2 intersects the circumcircle of the triangle ABC in points D and
E. Prove that the triangle DEH is right-angled.

S o l u t i o n.
Despite of the logical symmetry of the picture the right angle in triangle 4DEH is not H but

either D or E.
Denote by w the circumcircle of the triangle B2HC2. Midperpendicular to the segment C2H is

also the midperpendicular to CC1 therefore it passes through the midpoint X of side BC. By the
similar reasoning the midperpendicular to B2H passes through X. Therefore X is the center of the
circle w. A

B C

B1C1

B2 C2

H

D E

X

It is well known that the point which is symmetrical to the ortho-
center H with respect to the side BC belongs to the circumcircle of the
triangle ABC. The distance from this point to X equals XH due to
symmetry, hence this point belongs w, therefore it coincides with D or
E, without loss of generality with D. Thus DH ⊥ BC.

Finally, the centers of w and circumcircle (ABC) belong to the mid-
perpendicular of BC, therefore their common chord DE is parallel BC.
Thus ∠HDE = 90◦.
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13. The bisector of the angle A of a triangle ABC intersects BC in a point D and intersects
the circumcircle of the triangle ABC in a point E. Let K, L, M and N be the midpoints of the
segments AB, BD, CD and AC, respectively. Let P be the circumcenter of the triangle EKL, and
Q be the circumcenter of the triangle EMN . Prove that ∠PEQ = ∠BAC.

S o l u t i o n.

A

C

K

L BM

N

D

E

P

Q

Triangles AEB and BED are similar since ∠BAE = ∠EAC = ∠DBE. Hence ∠AEK =
∠BEL as the angles between a median and a side in similar triangles. Denote these angles by ϕ.
Then ∠EKL = ϕ since KL is a midline of 4ABD. Analogously, let ψ = ∠AEN = ∠CEM =
∠ENM . And let β = ∠ABC, γ = ∠ACB.

The triangle PEL is isosceles, therefore ∠PEL = 90◦− 1
2
∠EPL = 90◦−∠EKL = 90◦−ϕ and

∠PEA = ∠PEL− ∠AEL = ∠PEL− (∠AEB − ∠BEL) = 90◦ − ϕ− (γ − ϕ) = 90◦ − γ.

Analogously ∠QEA = 90◦ − β.
Thus ∠PEQ = ∠PEA+ ∠QEA = 180◦ − β − γ = ∠BAC.

14. A quadrilateral ABCD is circumscribed about a circle ω. The intersection point of ω and
the diagonal AC, closest to A, is E. The point F is diametrically opposite to the point E on the
circle ω. The tangent to ω at the point F intersects lines AB and BC in points A1 and C1, and
lines AD and CD in points A2 and C2, respectively. Prove that A1C1 = A2C2.

A

C

A1A2

B

C2 C1

D

E

F

X

ω

S o l u t i o n.
Denote by X the intersection point of the lines A1A2 and AC.

Prove that X is a contact point of escribed circle of 4AA1A2 with
side A1A2. Indeed, consider a homothety with center A which maps
incircle ω of 4AA1A2 to its escribed circle. This homothety maps
the line that is tangent to ω in point E to the parallel line which is
tangent to the escribed circle, i.e. to the line A1A2. Therefore the
point E maps to the point X, hence A1A2 is tangent to the escribed
circle of 4AA1A2 in the point X.

One can similarly prove that X is a tangent point of the line с C1C2 and incircle of 4C1CC2.
From the first statement we conclude that A1X = FA2, and from the second one that C1X =

FC2. It remains to subtract the second equality from the first one.
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15. Two circles in the plane do not intersect and do not lie inside each other. We choose diameters
A1B1 and A2B2 of these circles such that the segments A1A2 and B1B2 intersect. Let A and B be
the midpoints of the segments A1A2 and B1B2, and C be the intersection point of these segments.
Prove that the orthocenter of the triangle ABC belongs to a fixed line that does not depend on the
choice of the diameters.

S o l u t i o n.

A

A1

A2

B

B1

B2

C

X1

X2
Y1

Y2

H

K

L

M

N

s1 s2

s3

Prove that the orthocenter H of 4ABC belongs to their radical axe.
Denote the circles by s1 и s2. Let the line A1A2 intrersect circles s1 and s2 second time in points

X1 and X2 respectively, and the line B1B2 intrersect the circles second time in points Y1 and Y2.
The lines A1Y1 and A2Y2 are parallel (because both of them are orthogonal to B1B2), analogously

B1X1 and B2X2 are parallel. Hence these four lines form a parallelogram KLMN (see fig.). It is
clear that perpendiculars from the point A to the line BC and from the point B to the line AC
lay on the midlines of this parallelogram. Therefore H is the center of parallelogram KLMN and
coincide with the midpoint of segment KM .

In order to prove that H lays on the radical axe of s1 and s2 it is sufficient to show that both
points K and M belong to that radical axe.

The points X1 and Y2 lay on the circle s3 with diameter B1A2. The line B1X1 is radical axe of
s1 and s3, and the line A2Y2 is radical axe of s2 and s3. Therefore k is radical center of these three
circles and hence K lays on the radical axe of s1 and s2. Analogously M lays on the radical axe of
s1 and s2.
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4 Number Theory

16. Let p be an odd prime. Find all positive integers n for which
√
n2 − np is a positive integer.

S o l u t i o n.
Answer: n =

(
p+1
2

)2.
Assume that

√
n2 − pn = m is a positive integer. Then n2 − pn−m2 = 0, and hence

n =
p±

√
p2 + 4m2

2
.

Now p2+4m2 = k2 for some positive integer k, and n = p+k
2

since k > p. Thus p2 = (k+2m)(k−2m),
and since p is prime we get p2 = k + 2m and k − 2m = 1. Hence k = p2+1

2
and

n =
p+ p2+1

2

2
=
(p+ 1

2

)2
is the only possible value of n. In this case we have

√
n2 − pn =

√(p+ 1

2

)4
− p
(p+ 1

2

)2
=
p+ 1

2

√(p2 + 1

2

)2
− p = p+ 1

2
· p− 1

2
.

17. Prove that for any positive integers p, q such that
√
11 > p

q
, the following inequality holds:

√
11− p

q
>

1

2pq
.

S o l u t i o n.
We can assume that p and q are coprime, and since both sides of first inequality are positive,

we can change it to 11q2 > p2. The same way we can change second inequality:

11p2q2 > p4 + p2 +
1

4
.

To see this one holds, we will prove stronger one:

11p2q2 ≥ p4 + 2p2.

Indeed, dividing this inequality by p2 we get 11q2 ≥ p2+2, and since we already know that 11q2 > p2

we only have to see, that 11q2 can’t be equal to p2 + 1. Since we know that the only reminders of
squares (mod 11) are 0, 1, 3, 4, 5 and 9, p2+1 can’t be divisible by 11, and therefore 11q2 6= p2+1.

18. Let n ≥ 3 be an integer such that 4n+1 is a prime number. Prove that 4n+1 divides n2n−1.

S o l u t i o n.
Since p := 4n + 1 is a prime number, each non-zero remainder modulo p possesses a unique

multiplicative inverse. Since −4 · n ≡ 1 mod p, we have n ≡ (−4)−1 mod p, from which we deduce
that n ≡ −(2−1)2. Consequently,

n2n − 1 ≡
(
−(2−1)2

)2n − 1 ≡ (2−1)4n − 1 ≡ 0 mod p,

by Fermat’s Little Theorem.
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19. An infinite set B consisting of positive integers has the following property. For each a, b ∈ B
with a > b the number

a− b
(a, b)

belongs to B. Prove that B contains all positive integers. Here (a, b)

is the greatest common divisor of numbers a and b.

S o l u t i o n.
If d is g.c.d. of all the numbers in set B, let A = {b/d : b ∈ B}. Then for each a, b ∈ A (a > b)

we have
a− b
d(a, b)

∈ A. (∗)

Observe that g.c.d of the set A equals 1, therefore we can find a finite subset A1 ∈ A for which the
gcdA1 = 1. We may think that the sum of elements of A1 is minimal possible. Choose numbers
a, b ∈ A1 (a > b) and replace a in the set A1 with a−b

d(a,b)
. The g.c.d. of the obtained set equals 1.

But the sum of numbers decreases by this operations that contradicts minimality of A1.
Thus, A1 = {1}. Therefore all the numbers in the set A have residue 1 modulo d. Take an

arbitrary a = kd+1 ∈ A and b = 1. Then k ∈ A by (∗) and hence k = ds+1. But (k, kd+1) = 1,
therefore kd+1−ds−1

d
= k − s = (d − 1)s + 1 ∈ A, so s is divisible by d. But s ∈ A, therefore

s − 1 is also divisible by d, hence d = 1 (that means that B = A). Thus we have checked that if
a = kd+ 1 = k + 1 ∈ A then a− 1 = k ∈ A. Then all non-negative integers belong to A because it
is infinite.

20. Find all the triples of positive integers (a, b, c) for which the number

(a+ b)4

c
+

(b+ c)4

a
+

(c+ a)4

b

is an integer and a+ b+ c is a prime.

S o l u t i o n.
Answer (1, 1, 1), (1, 2, 2), (2, 3, 6).
Let p = a+ b+ c, then a+ b = p− c, b+ c = p− a, c+ a = p− b and

(p− c)4

c
+

(p− a)4

a
+

(p− b)4

b

is a non-negative integer. By expanding brackets we obtain that the number p4( 1
a
+ 1

b
+ 1

c
) is integer,

too. But the numbers a, b, c are not divisible by p, therefore the number 1
a
+ 1

b
+ 1

c
is (non negative)

integer. That is possible for the triples (1, 1, 1), (1, 2, 2), (2, 3, 6) only.


